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Quantum mechanical Hamiltonian models, which represent an aribtrary but 
finite number of steps of any Turing machine computation, are constructed here 
on a finite lattice of spin-1/2 systems. Different regions of the lattice correspond 
to different components of the Turing machine (plus recording system). Succes- 
sive states of any machine computation are represented in the model by spin 
configuration states. Both time-independent and time-dependent Hamiltonian 
models are constructed here. The time-independent models do not dissipate 
energy or degrade the system state as they evolve. They operate close to the 
quantum limit in that the total system energy uncertainty/computation speed is 
close to the limit given by the time-energy uncertainty relation. However, the 
model evolution is time global and the Hamiltonian is more complex. The 
time-dependent models do not degrade the system state. Also they are time local 
and the Hamiltonian is less complex. 

KEY WORDS: Schr6dinger equation description of Turing machines; 
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1. I N T R O D U C T I O N  

In  recent years there has been  an  upsurge of interest in the physical  
l imitat ions of the computa t ion  process. In  par t icular  the energy cost of 

computa t ion  or in format ion  transfer and  whether or not  there must  be 
energy dissipation are the subjects of much  discussion. (1-1~ Some years ago 

it was felt (3'7) that there mus t  be dissipat ion associated with the computa -  

t ion process because the process is irreversible. However,  in 1973, Ben- 
net t  (2~ constructed reversible models  of the computa t ion  process a nd  
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discussed thermodynamically reversible models of computation. Recent 
papers on the subject (1'1~ which assume that energy is dissipated in the 
computation process have been criticized by Deutsch. (5) 

In recent work Landauer (~1) has stressed the importance of determin- 
ing if dissipationless models of the computation process exist. Fredkin and 
Toffoli (12) have constructed a classical mechanical billiard ball model of 
the computation process which dissipates no energy. In other work (13-15) 
quantum mechanical Hamiltonian models of Turing machines and of 
abstract discrete processes were constructed. These models used successive 
scatterings to drive the model. Two of these models were dissipative in the 
sense that as the overall system state evolved the amplitude of undesirable 
components in the (pure) state increased with time. (14'15) Another model (13) 
was not dissipative. This was a consequence of the assumption that the 
kinetic energy (of the scatterer) is a linear function of the momentum. 

In this work, quantum mechanical Hamiltonian models of Turing 
machines will be constructed which avoid the use of successive scatterings. 
The models will be constructed entirely on a lattice of spin-l/2 systems in 
which some configurations of spin projections along a fixed axis represent 
descriptions of the Turing machines at the completion of computation 
steps. Changes in the system can be represented by spin-flip operators 
acting on appropriate lattice sites. Since no systems move in the models 
constructed here, the sources of dissipation which were present in the other 
models, (~4,~5) such as wave packet spreading, etc., are absent here. 

In the next section a brief review of Turing machines is given. It is 
followed by the construction of the representation of the complete descrip- 
tion of any Turing machine plus record system state as a configuration on 
the lattice of spin-l/2 systems. The corresponding model configuration 
states, projection operators, and elementary configuration change operators 
are given in Section 3. These states and operators are used in Sections 4 
and 5 to construct respective time-dependent and time-independent Hamil- 
tonian models for the first J steps of any Turing machine computation. 

Sections 6 and 7 discuss characteristics of the models constructed here, 
and properties and restrictions on measurements made on the model 
systems. It is seen that the time-independent models dissipate no energy 
and do not degrade the model state as they evolve. They also operate close 
to the quantum limit in that the total system energy uncertainty/computa- 
tion speed < 2r However, the Hamiltonians are complex. They are also 
time global which make the carrying out of measurements to determine 
system parameters quite difficult. Such measurements also necessarily intro- 
duce energy dissipation and perturb the system state. [A model is time 
global if, as the model system state evolves from a state representing stage n 
to a state representing stage n + I, it passes at intermediate time through 
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states which are linear combinations of states representing all stages. It is 
time local if for all intermediate times the state is a linear combination of 
the stage n and stage n + 1 states only.] 

The time-dependent Hamiltonian models also do not degrade the 
system state. The Hamiltoians are less complex and the model evolution is 
time local. As a result measurements to determine if the computation has 
halted are neither so difficult to carry out as they are for the time- 
independent models nor do they perturb the system state or introduce 
energy dissipation. However, an external agent is required to turn on and 
off the successive step Hamiltonians. Section 8 compares some aspects of 
the models constructed here with those constructed elsewhere. ~13-15) 

2. TURING MACHINES 

2,1. Preliminaries 

Since Turing machines have been described elsewhere ~2:6) the descrip- 
tion given here will be brief. Turing machines consist of three parts, an 
internal machine ~, a computation tape ~-, and a computation head h. The 
states of s will be represented here by the numbers 0, 1 . . . .  in N. ~- is an 
infinite array of cells where each cell can assume any one of a finite 
number of states in S, the tape symbol alphabet. A special element b of S 
denotes the blank. The expressions on ~- are given by any symbol sequence 
~ , : Z ~  S where Z is the set of integers and ~,(j) = b except for at most a 
finite number o f j  values. (S)  z denotes the set of all such 2/. h scans one cell 
at a time with its states given by the celt labels j in Z. 

The basic operations of the machines are represented by quintuples of 
the form l (s ,s 'a) l '  which states that ~ in state l and the symbol s in the cell 
of g- scanned by h are changed to state l '  and symbol s' and h is either 
shifted one cell to the right (a = + 1), or to the left (a = - 1) or stays where 
it is (a---0).  Each Turing machine corresponds to a finite set Q of 
quintuples no two of which begin with the same two symbols. If at the end 
of a step, ~ is in state I and s is the tape symbol scanned by h, the next step 
of a machine Q is given by the quintuple in Q of the form l(s,-  -)-. If no 
such quintuple is in Q, the machine halts. 

Each machine Q defines a function ~-Q: N • S ---) N • S • { - 1,0 + 1 ), 
where for each (ls) if there is a quintuple, l (s ,s 'a) l '  in Q beginning with l 
and s then 

�9 Q (:s) = ( t ' s ' a )  (1) 

If no quintuple in Q begins with I and s then "rQ(1S) = (lsO). 



518 Benioff 

From ,rQ one can define a machine transfer function, TQ, as a map 
T Q : I D ~ I D  where ID = N • 2 1 5  Z is the set of all instantaneous 
descriptions of the machine. TQ is defined from "rQ by 

TO (l/j) = (l '7 ' j ' )  (2) 

where ro(l,'t(j)) = (l'7'(j)a), j '  = j  + a, and 7'(k) = 7(k) for all k ~ j .  The 
steps of Q correspond to iterations of T o and the process halts at a fixpoint 
of T o . 

It is convenient to restrict Turing machines to those which carry out 
computations in a standard form. That is, at the outset ~ is in state "1", h is 
scanning cell "0" of ~-, and the initial expression "~i(J) = b i f j  < 0 and no 
two nonblank symbols on Yi are separated by a blank. Also the states of 
are arranged in the quintuples of Q in a standard ordering. That is, after n 
steps of any computation by any standard Turing machine, the state of s 
lies in the first N n numbers in N where 

N n = ~ mJ. (3) 
j=0 

Here m is the number of symbols in S. The standard form of the final state 
is similar to the initial state except that E is in a different designated state. 

In what follows, numbers will be represented on the lattice model as 
binary strings of spin up ( + )  and spin down ( - ) .  The representation of all 
positive numbers < n requires binary strings of length 12(n), where 

=[ln2(n)]  + 1 if lnz(m) - [ lnz(m)]  > 0 

12(n) = ln2(n ) if ln2(m ) -  [ ln f fm) ]  = 0 (4) 

[r] denotes the largest integer contained in r. Blank cells of ff will be 
modelled as strings of ( - )  spins. In representations of binary numbers on 
the lattice, spin up ( + )  corresponds to 1 and spin down ( - )  to 0. Thus, any 
blank cell of ~- corresponds to the number 0 recorded in the cell. 

From now on, we shall consider systems which model the first J steps 
only of any standard Turing machine computation. This restriction is done 
purely in the interests of mathematical simplicity to avoid dealing with the 
quantum mechanics of infinite-dimensional systems. A consequence of this 
restriction is that the states of E then lie in the set { 1, 2 . . . . .  Nj}. 

In general, the transfer function TO, for Turing machines is many-  
one. To Construct a Hamiltonian model of a discrete process, it is necessary 
that the step function (or transfer function) for the process be one-one. 
This is done here by addition of a record system ~ and a recording head j. 
For each Turing machine step, three types of operations are considered: a 
recording operation, a compute operation, and a shift operation. In the 
recording operation, the state of ~, the contents of the 3- cell scanned by h, 
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and the position of h are recorded in the (blank) cell of ~ scanned by j. In 
the compute operation, the state of ~, the contents of the ~" cell scanned by 
h, and the position of h are changed corresponding to the quintuple of Q 
whose first two symbols are recorded in the ~ cell scanned by j. The third 
type of operation shifts j to a fresh record cell. These three types of 
operations will be modeled on the lattice either as three types of steps 
repeated over and over in the order given (Section 4) or as one step, which 
combines the operations, repeated over and over (Section 5). 

2.2. Spin Lattice Model 

The overall system model is constructed on a two-dimensional lattice 
of spin-1/2 systems. Each component system will be modeled as a sublat- 
tice of spin systems. Besides sublattices for the internal machine ~, the 
computation tape ~-, and the computation head h, there are sublattices for 
the recording head ] and the record system ~ .  Figure 1 shows the 
sublattices. A more detailed description follows. 

A spin- 1/2 lattice model of ~ valid for J steps of any standard Turing 
machine calculation requires a lattice region R e of at least 12(Nj) sites. For  
convenience R e is here taken to extend for J + 1 sites in the x direction, 
from position 0 to J,  and M sites in the y direction, from position 0 to 
M -  1. Here and in what follows M = 12(m), the length of binary strings 
needed to represent the symbols, is S. Note that since Nj < m J+l by Eq. 
(2), MJ + J >1 I2(N:). 

Each state I of ~ which is reachable in < J steps, when considered as a 
number in { 1 . . . .  Nj}, has an inverted binary representation as a finite 
string of zeros and ones. That is 2 - 01, 3 = 11, 4 = 001, etc. The inversion 
is done so that one can extend the representation as a 0, 1 sequence on 
(1 . . .  M .  (J  + 1)} by adding zeros to the right without changing the value. 
In what follows l will denote either the number or its extended inverted 
binary representation. It will be clear from context which is intended. 

Let O be a fixed map which well-orders the sites of R~. An example is 
O(j , k )  = j M  + k for t hey  coordinate k = 0, 1 . . .  M - 1 and x coordinate 
j = 0 . . . .  , J.  | is a bijection from R e to {0, . . .  [(J + 1). M)] - 1 }. Then 
each state 1 of ~ corresponds to a spin configuration F t on R~ given by 
Ft( i , j )  = I(~)(i, j ))  for each site (i, j )  in R e . This example corresponds to 
laying out the inverted binary representation of the state 1 as follows: the 
first M zeros and ones along the line of M spins in the y direction at x = 0, 
the next M zeros and ones along the M spins at x -- 1 . . . . .  and the last M 
zeros and ones along the M spins at x = J. 

The computation tape ~- is modeled by a rectangular region R~ of 
length 2J  + 1, from - J  to J,  in the x direction, and of length M, from M 
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Fig. 1. A representation of the lattice model of the overall computing system. The X and Y 
components of the positions of the lattice sites are given by the numbers from - J  to J and 
from 0 to 2M + Lfl + 1, respectively. The lattice regions for the ~, l, and ~ component 
systems extend from 0 to J in the X direction and for the ~- and h components the regions 
extend from - J  to J. The extent and positions of the ~, ~-, and ~ regions in the Y direction is 
given by the curly brackets, The sites for the heads h and j occupy one row each at Y positions 
2M and 2M + 1, respectively. + denotes spin up and - denotes spin down. The dots indicate 
that the regions are filled with one spin-l/2 system at each site. 

to 2 M  - 1, in  the y direction, Fig. 1. For  each j where - J < j < J ,  the 
sublat t ice of R~- of sites at x p o s i t i o n j  and  extending from M to 2 M  - 1 in  
t h e y  direct ion corresponds to t h e j t h  cell of the tape. The  length of the tape 
is dictated by the fact that  in a s tandard  computa t ion ,  the head starts in  the 
center and  in  J steps can  move at most  J steps to the left or fight. 

Assume a given representat ion of S to the set of + ,  - strings of length 
M. T h e n  the spin conf igura t ion in  the sublatt ice of R~ described above 
corresponds to the contents  of t h e j t h  cell of ~-. This  can  be extended in  an  
obvious way so that  each tape expression 7 corresponds to a conf igura t ion 
on  R0 s. I n  what  follows, depend ing  on  context, 7 will denote  either a tape 
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expression or the corresponding spin configuration on R~-. It will also be 
assumed that under the given representation, a blank cell corresponds to a 
string of - signs or all spins down in the corresponding sublattice of R~-. 

The computation head h is modeled as a line of spins a t y  position 2M 
extending from - J  to J in the x direction. All spins in the line are down 
except one whose x position denotes the position of h and the ~- cell 
scanned. For example, the configuration . . . . . .  - ,  + - ,  . . . .  - ,  
where the spin up ( + )  system is at position j represents h at position j .  

The recording head j is modeled in the same way as h except that the 
sublattice of spins occupies y position 2M + 1 and extends from 0 to J in 
the x direction. 

The model of the record tape system ~ is somewhat more complex 
because a triple of numbers can be recorded in each cell, or the cell can be 
blank. One records in each cell the state of s the ~- cell symbol scanned by 
h, and the position of h. For the first J steps of any calculation and for any 
standard Turing machine, the state of s will lie in N,,  the contents of the ~- 
cell scanned by h will lie in S, and the position of h will lie in { - J ,  J }. 

Assume a one-one map of (N: x S x { - J , J } )  U ( b )  into the set of 
all binary sequences of length L~. The extra b allows for the fact that the 
record cell can be blank. Since the map must be onto or into, one must 
have Ls  ~ >f l 2 [ (N  s �9 rn .  (2J + 1) + 1]; the equality is taken here. m is the 
number of elements in S. A standard example of such a map is the function 

defined by 

r = 2 , ( K ( K ( I , s ) ,  u ( j ) )  + 1) (5) 

and @(b)=2s(0). Here u maps { - J , J }  to { 0 , . . .  ; 2 J )  according to 
u ( j )  = 2j + 1 i f j  > 0 and u ( j )  = - 2 j  i f j  < 0. K is the pairing function (17) 
defined by K ( m , n )  = �89 2 + 2 m n  + n 2 + 3 m  + n). The symbol s on the 
right-hand side denotes the value of s in { 1, m ) under a fixed bijection of S 
to {1,m}. 2j(n) gives the usual binary representation of n extended by 
zeros to the left so that 2s(n ) has length Lje for all n < [ N  s . m �9 (2J + 1)] 
+1 .  

The ~ lattice region R~ extends from 0 to J in the x direction and 
from 2M + 2 to 2M + 1 + L f  in they  direction, Fig. 1. The contents of the 
kth record cell is modeled by the spins in the sublattice of R~ at x position 
k and which extends from 2M + 2 to 2M + 1 + L f  in the y direction. The 
representation 2j( j )  o f j  in each model cell is organized so that a t y  position 
2 M + 2 + n ,  a + spin corresponds to 1.2" and a - spin to 0.2L This 
corresponds to the usual binary representation j = ~ o [ 2 ~ ( j ) ] ( n ) .  2". 

Let ~ be a map from {0,J} to (Nj X S X { - J , J } )  U {b). Then q~ 
gives the contents of the record system with 4~(k) the contents of the kth 
record cell. One can use the map q, to construct from each record expres- 
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sion @, a spin conf igura t ion  G ,  on R~ where  for each lattice posi t ion 
(k ,2M + 2 + j) 

G~,(k,2M + 2 + j )  = [d~(@(k))]( j )  (6) 

For  simplicity and  in order  to have  one fixed lattice model  to represent  
all machines ,  the size of  the lattice is larger than  is necessary.  For  example,  
bo th  R ~  and  R e can  be greatly reduced if the lattice mode l  is to apply  to 
one mach ine  only. 

I t  is helpful  to give a concrete  real izat ion of the foregoing mode l  
representat ion.  T o  this end, let S = (b, sl,s2}, where b, sl,s2 cor respond  to 
the number s  0, 1, 2. Then  m = 3 and  lz(m ) = 2. Let  J = 5. Then  Fig. 2 gives 
the state of  the lattice resulting after  the opera t ions  triple, r e c o r d - c o m p u t e -  
]-shift have  occurred  twice where  the quintuples used for  the two compu te  

Y 

2C 

16 

12 

I 

+ 

- -  + 

+ + 

+ - 
! �9 

+ - _ 
- + . . . . .  ] u  

_ _ + - + + - ' ~ .  
J - + - + + + 

+ + . . . .  

L I I 3 - -  L L I I I [ i 

-5 -4 -3 -2 -I 0 I 2 5 4 5 X 

Fig. 2. The lattice model spin configuration for the example given in the text. The Y and X 
lattice site position coordinates are given by the ordinate and abscissa scales, respectively. The 
two-headed arrows denote sites occupied with spin down ( - )  systems. As in the previous 
figure, the regions associated with each component system are denoted by the curly brackets 
and/or the script letters. 



Quantum Mechanical Hamlltonlan Models of Turing Machines 523 

operations are l(b, 1 - 1)3 and 3(b,20)5. The configuration on R e corre- 
sponds to the inverse binary representation of 5, or 1 0 1 0 . . .  0, as ~ is in 
state 5. The expression on ~- is, from left to right, bbbbs2sls2SlSlSzS l . In 
particular, s~ must be at x position - 1, and s~ must be at position 0 with 
the remaining symbols ( s2s ls l s2s  ~ which are arbitrary) given as part of the 
standard input, h is at position - 1  as given by the quintuples and j is at 
position 2 scanning a blank record cell. All record cells to the right of j are 
also blank. 

The length of the ~ sublattice in the y direction is given by L f  

--- 12(N s �9 m ( 2 J  + 1) + 1). Since N s = 364 [Eq. (2)], Ls R = 14. According to 
the quintuples, the first and second record cells have (I ,0 ,0)  and (3,0, 
- 1 )  recorded in them. This means that q~(1,0,0)= 2 j ( 6 ) =  . . .  110 and 
~(3,0, - 1) = 2s(76 ) = . . .  1001100 are recorded in cells 0 and 1 of ~,. This 
is shown in Fig. 2. 

3. MODEL STATES AND OPERATORS 

3.1. Model States 

Let ~+ (i, j )  and t)_ (i, j )  denote the respective spin up and spin down 
states for the sp in- l /2  system at lattice site (i ,  j ) .  qJ+ and ~b_ are given by 
the respective column vectors (~) and (1~ in the representation under 
consideration. 

Let f by any configuration defined over a subregion R of the lattice. 
Then the configuration state 't,f is given by 

%= @ V/f(i,j)(i,j ) (7) 
(i,j) ~ R 

This generic definition can be used to give the definitions of the configura- 
tion states needed here. ,I~, the state which corresponds to E being in state 
l, is defined by Eq. (7) with R = R e (Fig. 1). Here l denotes either the state 
of E or the corresponding configuration of spins over R e. It will be clear 
from context which is meant. 

q,~, ~,h qs~,e and xI'~ are defined similarly. Note that 

J 
�9 I,y = ~(j) (8) 

j = - J  
where 'I'~-~j) is defined over the region R~sj of the lattice which corresponds 
to cel l j  of ~- and is the configuration state coresponding to symbol u  in 
cell j of ~. A similar definition holds for ,I,~ which corresponds to 
expression ~ in the cells of ~ .  Equation (6) is used to give the configuration 
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corresponding to q~. The states ,I~ and , I /  which correspond to the 
computation head h at position j and the record head at position k are 
defined by Eq. (7) over R h and R 1 (Fig. 1). For h at j ,  f ( i ,2M) = - if i :~ j  
and f ( j , 2 M ) =  +.  For i at position k f ( i , 2 M + l ) = -  if i ~ k  and 
f ( k ,2M + 1) = + .  

The overall lattice state for the spin configuration which describes ~ in 
state l, ~ with expression 7, @ with expression ~, and the heads h and j in 
positions j and k is given by 

,I,~:k+ = , Ie |  ,I~ +- | "I'~' | `i~ | ` i~ (9) 

Such states are a subset of all possible lattice configuration states given by 
% =  | n) ~ Rs,If(m, .)(m, n), where Rj is the whole lattice region shown 
in Fig. 1 and f is an arbitrary configuration on Rj.  

3.2. Model Projection Operators 

The model projection operators needed here can also be obtained from 
a basic definition. As before let f be a configuration defined on a region R 
of the lattice. Then the projection operator for finding the systems in region 
R in the configuration state ,If is defined by 

Pf= (~ Pf(i,j)(i,j) (lO) 
(i,y3 eR 

where the projection operator for finding the spin- l /2  system at site (i, j )  
with spin u p ( + )  or d o w n ( - )  is given by 

1 +_ o3(i,j ) 
P+_(i,j) - 2 (11) 

Here %(i, j )  is the Pauli spin matrix (~ ~ 0 for the spin of site (i, j) .  From 
the definition one has that for any configuration g defined over R 

Pf , Ig  = `ifSf,  g 

where 8f, g = 1 if f = g and 0, if f =~ g. 
By means of the above one can define Pr e, over the region Re, P~ over 

R~-, Pj" over Ru, P] over R I an d  Pff over R~.  Note that the projection 
operator for finding expression "~ on g can be written as 

g 

P#= @ P~j)j (12) 
j = - J  

where Pr~j)j is the projection operator for finding symbol y ( j )  in cell j  of ~,. 
A similar decomposition holds for P ~  the projection operator for finding 
expression ~ in the cells of ~ .  Note that, for example Pte is the projection 
operator for finding s in configuration state ,It e whereas one speaks of p e 
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asthe  projection operator for finding ~ in state l. This confusion between 
configuration states and system states which they represent will be contin- 
ued as it will always be clear from context which is meant. For each 
complete machine description l'/jkep, the projection operator for finding the 
system in state "I~trjk +, Eq. (9), is given by 

P+v/k+ ez ~ | = C | ?:-"| 03) 

3.3. Model Configuration Change Operators 

Let f and g be two configurations defined over the same region R of 
the lattice. Define afg by 

ofg= ~ ol ( i , j )  (14) 
( i,j) ~ Dfg 

Here Dfg = ( ( i , j ) [ f ( i , j ) v  a g ( i , j ) )  is the set of all lattice sites at which f 
differs from g and ol(i, j )  is the spin-flip operator for the system at site 
( i , j ) .  a I is the Pauli matrix (0~) which exchanges ~p+ and ~b_. Ofg is the 
operator which exchanges ,Itf and q'g. That is afg~f = ~'g and ofgqfg = ~f .  
In fact since o~ = 1, one has o k - 1. 

Note that aygqth V a ~h for all other configurations whose domain of 
definition has a nonempty overlap with Dig. If f = g then Dig is empty and 
ofg = 1. 

It is convenient to generalize the above somewhat and consider the 
unitary operators Ufg defined by 

Wfg " =  ei3(f'g)ofg (15) 
where exp[ifl(f, g)] is a phase factor which can depend on f and g. Ufg is 
unitary, and is self-adjoint if and only if fl(f, g) = 0 (rood 2~r). 

As is well known, the exact form of/3(f, g) depends on the form of the 
interaction used to generate the exchange operation. Here the interaction 
Hamiltonian Hfg will be taken to have the form 

~rh (16) 

where A is an arbitrary time interval. Then with Ufg(t) defined by 

U:g(t) = e-itz+:,/h (17) 

one has 

%g(t) = cos( ) - ioygsin( (18) 
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In this case 

Ufg(A)  ..~ Ufg -~- - iofg (19) 

where f l ( f ,  g) = 3~r/2 independent of f and g. Many other choices of Hfg 
are possible but these will not be examined here. 

4. TIME-DEPENDENT HAMILTONIAN MODELS 

4.1. Record, Compute, and Shift Steps 

In this section models of the computation process will be constructed 
in which each step in the process is replaced by three steps: record, then 
compute, then shift. The reason this is done is that it becomes possible to 
arrange things so that the systems whose configuration states determine 
which configuration change operations are to be used are different from the 
systems on which the configuration changes are carried out. Speaking 
crudely, one requires that in each step the systems examined are different 
from the systems whose states are=changed. 

The reason this requirement is imposed is that it results in a relatively 
simple Hamiltonian description for each step of the process. This i s  a 
consequence of the fact that the projection operators which function as 
system examining operators commute with the system configuration change 
operators. This would not be the case if the projection operators referred to 
the same systems as the configuration change operators and would result in 
a more complex Hamiltonian. 

The function of the record step in the forward compute phase is to 
record the state of E, the contents of the ff cell scanned by h, and the 
position of h into the blank record cell scanned by ]. The compute step 
carries out on the system E + ~- + h, the operation defined by ~-Q, Eq. (1), 
whose arguments are given by the values of l and s in the record cell 
scanned by ]. The recorded position of h is used to choose the position at 
which the h head shift, if any, will occur. The third type shifts the recording 
head ] to a fresh record cell. 

The operator V l for the record operation is given by 
Nj  j j 

es) | Ps" | | + 1 - P, (20) 
l~1  s E S j = - J k = O  

where 
Nj j j 

e =X X X 
l = 1  s ~  S j = - J  k=O 
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The operator U~)b is given by Eq. (19) with f and g the respective 
configurations (lsj) and b in cell k of ~ .  The 1 - P1 term takes care of the 
fact that there are spin configurations on the overall lattice model which do 
not correspond to any desired state as defined by Eq. (9). An example is a 
configuration with more than one spin up in the h or j sublattice. 

It is clear that V~ satisfies the requirement since s ~-, h, and i are the 
systems examined and ~ is the system whose configuration is changed. V~ 
functions as follows: if the record cell scanned by | is blank then V~ records 
into the cell the state of s the symbol in the cell ~- which is scanned by h, 
and the position of h. Conversely, if the record cell scanned by i already 
contains a correct record of the state of E, the symbol of ~- scanned by h 
and the position of h, then V~ erases the record cell. If the record in the cell 
scanned by j does not correspond to the state of ~, the symbol of ~- 
scanned by h and the position of h, then V l makes other changes on the 
record cell scanned by j. However, these are of no consequence here. 

Mathematically the above is expressed by 

where r  if ~ ( k ) =  b and r  b if r  (l, ~(j), j) .  
Note that r = e0'(h) for all h +~ k. V~ also makes changes on O(k) if ~(k) 
has other values. However, these are not of concern here. 

The operator for the compute operation is given by 

N+ d j 

v.= Y Y E E �9 +(is), (+.:'.) | PJ | P(#/)~ + 1 - P2 (22) 
1=1 s E S  j = - J  k=O 

where 
Nj  j j 

P dsj ) k 
l = l  s E S j = - J k = O  

and the 1 - P2 term serves the same purpose as the 1 - Pl term in Eq. (20). 
l', s', and a are defined by .rQ(ls) = (l's'a), Eq. (1). 

By Eq. (19), one has 

U~h/(rs,~) = - ion,  | OsJ~ | o~J (23) 

For a~, f and g are the configurations for I and I' on R e (Fig. 1). For oS~/f 
and g are the configurations for s and s' on R~j, the region of the lattice for 
cell j of 9, and for o~ j f and g are the configurations for j and j + a on 
region R h. [Note that positions J + 1 and - ( J  + 1) become - J  and J,  
respectively.] If a = 0, then a~ j is the identity operator. 

V 2 also satisfies the requirement noted before since ~ and j are the 
examined systems and E, ~-, and h are the systems whose configurations are 
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changed. V 2 functions as follows: if the cell of ~ scanned by j contains 
some record Isj which correctly represents the state of E, the contents of the 
cell of ~- scanned by h, and the position of h, then V2 carries out a 
computation step on E, ~-, and h in that it changes I, s, and j to l', s', and 
j + a where "re(l,s ) = ( l 's 'a) .  If the cell of ~ scanned by i contains lsj but 
the state I' of E, the contents s' of the ~- cell scanned by h and the position 
j '  of h are related to lsj by "ro(ls ) = ( l ' s 'a)  withj '  = j  + a, then V 2 undoes a 
computation step by changing l '  to l, s' to s and j '  to j .  If the contents of 
the record cell scanned by j and the state of E the symbol in the cell of ~- 
scanned by h and the position of h are not related as described above, then 
V 2 also changes the states of E, ~- and h. However, these changes are of no 
concern here. 

Mathematically, this is expressed by 

V2~Itl,71jlk,# ~- - i ~  t,vT, k,  (24) 

The first change is that for which for some ( l , s , j )  ep(k)= ( l , s , j )  and 
l I = l, " / l (J)= s and j l  = j .  In this case, which corresponds to a compute 
step (l ' ,r ' , j ' )  satisfy ze(/ ,s  ) = (l', , (( j) ,  a) wi th j '  = j  + a and r ' (h)  = Vl(h) 
for all h v~j. The other change is that for which ~ ( k ) =  (Isj) and ra(ls)  
= (l iSla) where j l  = j  + a and "el(J0 = Sl. In this case which corresponds 
to an inverse compute step l '  = l, •'(Jl) = s , j '  = j ,  and r ' (k)  = r l (k)  for all 
k 4 : j i .  V2 also makes other changes. 

The operator for the shift step is defined by 

J 
V3 = 2 l~'h@ uJ+kl @ p ~  q" l -  P3 (25) 

k=O 

where P3 = 2~=0  le~"l | P2-  P 2  is the projection for all model states of the 
record sublattice such that cell k of ~ is the last (in the direction of 
increasing k) nonblank cell. It is defined by Ps k = ~ P ~  where the super- 
script k on the ~ sum denotes the restriction to those ~ such that ~(k) v a b 
and e0(j) = b for all j such that k < j < J. 

For V3, one has 
V3~ lvjkq, = - iqt lvjl,, 0 (26) 

where k' = k + 1 if k is the last filled cell in q~ and k' = k - 1 i f / ~ -  1 is the 
last filled cell in ~. [Note that k + 1 = 0 if k = J and k - 1 = J if k = 0.] 

The above can be used to show that the unitary operators V 1 , then V 2, 
then V 3 applied over and-over in the order given to an appropriate initial 
state qt~v00b generate the desired steps of the process. Here 1 denotes the 
(standard) initial state of L and b means that all cells of ~ are blank. In 
particular, if m < J then (V 3 V2 Vl)'~I'lr0~ is the model state corresponding 
to the completion of m computation steps. Details on the model state for 
m > J will be given in Section 6.1. 
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4.2. Time-Dependent Hamiltonians 

The goal is to construct for each Turing machine, a corresponding 
model lattice Hamiltonian H such that the Schr6dinger evolution of se- 
lected configuration states models the first J steps in the Turing machine 
computation. To this end, let A be a convenient time interval and define H 
by 

[ H~ if 3 m A <  t < ( 3 m + l ) A  

H =  H 2 if ( 3 m + l ) A <  t < ( 3 m + 2 ) A  

n 3 if (3m + 2)A < t < (3m + 3)A 

(27) 

for each integer m. H 1 , H 2, and H 3 are step interaction Hamiltonians which 
satisfy (h = 1) 

Vj = e - i ~  (28) 

f o r j  = 1,2,3. 
It is clear that H, as defined, is time dependent as it requires an 

external agency to switch on and off the appropriate interactions. However, 
the time evolution under H does proceed as desired. To see this, let 
t = (3m + h)A where h = 0, l, or 2. Then if the whole lattice system is in 
state xI" at time 0, the state xI'(t) at time t is given by 

qz(t) = e - i H t  lN t = e - i H h + , A  . . . e - i H ] A ( e - i H 3 A e - i H 2 A e - i H ' A ) m x ~  (29) 

which is the desired result. 
One sees from the above that for times t = (3m + h)A where m < J, 

exp[ - iHt] applied to the state q'lv00b generates a model state describing the 
Turing machine plus recording system after 3m + h steps. If m > J, t h e  
state q'(t) is given by Eq. (29), but the model no longer describes the 
record-compute-shift  evolution of the Turing machine plus record system. 

The step interaction Hamiltonian for the recording step is taken to be 

Nj j j 

e,} | P? | (30) = HUsj)  b 
l=1 s ~ S j = - J k = O  

where H ~k is given by Eq. (16) where the two configurations f and g (/sj)b 
denote those for (lsj) and b in cell k of the record system. For / /2 ,  one has 

Nj j j 

1t2= Z Z Z Z t4e~.j ~ (31) ==(Is), (z's'~) | pI | P(lsj)k 
l = l s ~ S j = - J k = O  

From Eq. (16) one has 
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where the configurations f and g denote respectively those for l and l' on 
the system ~, for s and s' in the j th cell of 9, and positions j and j + a 
for h. 

For each value of l and s, l', s' and a are given by ~o' Eq. (I). If 
t4t~hj = ~rh/2A. This corresponds to no change in "rQ(IS) = (IsO), then --(ts), (rs'~) 

the configurations of ~, ~-, and h. 
For H 3, one has 

J 

H 3 = ~, H ~ , |  e f t  (33) 
k = 0  

where H~I is given by Eq. (16) with configurations f and g referring to 
positions k and k + 1 (mod J + 1) of the head j. 

The above choices for H l, H 2, and H 3 satisfy Eqs. (20), (22), and (25) 
when they are substituted into Eq. (28). This follows from the pairwise 
orthogonality of the terms in the l, s, j ,  and k sums. 

At times, t = (3m + h)A + 8 which are not integral multiples of A, 
exp[- iHt]  can be written as exp[- iHh+16]exp[- iH(3m + h)A] where 
h = 0, 1, or 2. The action of exp[ - iH(3m + h)A] is given by Eq. (29). 
exp[ - iHl~  ] is given by Eq. (20) with •k Uitsj)b replaced by exp[-iH~sk)b6]. 
This in turn is given by Eqs. (17) and (18) where f and g refer to 
configurations (lsj) and b in cell k of ~ .  

For h = 1 exp[-  iH26 ] is given by Eq. (22) with U~,{/,s,~) replaced by 

e x p [ -  : ~'~-"J .l = cos( ~-8 " o:J)sin( ?r6 ,n(,,), (r,,,)oj ~-~ ) - i(o~, | o~ j, | ~-A ) (34) 

Here Eq. (18) has been used. For h = 3, exp[-  iH38 ] is given by Eq. (25) 
with U~I replaced by exp[- iH~18 ]. This can also be put into the above 
form by use of Eq. (18). 

The Hamiltonian given above is fairly simple, which makes it straight- 
forward to understand how it works. However, it has the disadvantage that 
it is time dependent. This requires the use of some external agency to 
change the overall system Hamiltonian according to the prescription given 
by Eq. (27). 

It is more desirable to construct a model of the process in which the 
Hamiltonian is time independent. Such a model has the advantange that 
the evolution is truly isolated and does not require the intervention of an 
external agency. 

5. TIME-INDEPENDENT HAMILTONIANS 

The method used here to construct a model with a time-independent 
Hamiltonian is based on the following observation. In the construction 
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given, the origin of the time dependence is in the turning on of the 
successive step-type Hamiltonians so that the operations VI, V2, and V 3 
could be carried out in succession, each in an interval A. However, there is 
no reason why the model evolution cannot be speeded up so that in a time 
interval 2x, the operation V corresponding to all three steps, record, then 
compute, then shift, is carried out. That is, it is desired to construct a 
unitary operator V such that for each machine description (lTjkq~) 

V't'~v~, = `ir~7~'~' (35) 

where `itvjk, and `irvTk, ,, are related by 

V 3 V a Vl`itvj~ ~ = iqz,v),k, ~, (36) 

The relationship between the primed quantities and unprimed quantities 
and the overall phase factor in Eq. (36) can be constructed from Eqs. (21), 
(24), and (26). Details will not be given here and are left to the reader. Note 
though that if lyjkeo describes a (standard) Turing machine at the end of n 
steps of a standard computation (n < J) ,  then ( l 'y ' j ' k 'q , ' )  describes the 
machine at the end of n + 1 steps. Recall that there are many configura- 
tions (lyjkq,) which do not correspond to any state of a standard Turing 
machine computation. Also by the construction given in Section 2 there are 
configurations f which do not represent any (lyjkep). A n  example is a 
configuration with more than one spin up in the lattice region associated 
with the record head j. V may or may not be the identity on these 
configuration states; which it is depends on the configuration. 

Consider some state 'I'lv0Ob which represents the initial state of a 
standard computation (Section 3). Let Ny be some number defined by 
(v)N~`ilv00b---- `ilv00b. Such a number exists because V is unitary and the set 
of configurations on the lattice is finite. Define the orbit of V at `i~v00b by 
the set of states { V"`i1yoOb_]n = O, 1 . . . . .  N~ - 1). 

For each ~,, there is an orbit of length Nv. Since V is unitary no two 
orbits have any states in common. Note that Nv > J for each ,/. As a result, 
up to J iterations of V on `iZv00b correspond to the carrying out of up to J 
standard Turing machine computation steps. Continued iteration on V up 
to N y -  1 times destroys the representation as the resulting states do not 
correspond to stages in the computation. However, the effect of the 
continued iteration is to erase the record and undo the computation, since 
the initial state is recovered. 

Besides the above orbits, there are many other nontrivial ones. Any 
lattice configuration f such that ,If  is not in the orbits already generated 
can be used to generate a new orbit. By this process, one can exhaust the 
configuration states on the lattice and find all the orbits of V. 

The above is easily translated into standard Hilbert space language. 
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subspaces Hv 
restrictions Vv 
by 

The lattice Hilbert space %, spanned by all the configuration states, can be 
decomposed into a set of closed subspaces which are invariant and irreduc- 
ible under V and are in one-one correspondence with the orbits. Each 
subspace is spanned by the states in the corresponding orbit. In particular, 
for each standard tape expression 3', there is such a subspace %r spanned 
by (V"'tqvo@n -- 0, 1 . . .  N v - 1}. 

Let %~, %2, �9 �9 -, %N be a listing of all the V invariant, irreducible 
subspaces with P1 . . . . .  PN, the corresponding projection operators on the 
subspaces. Then V can be decomposed as 

N 

v= VjP s j=l 
where Vj%j = %j = Pj% and [Vj, Py] = O. Here, one is interested in the 

with their corresponding projection operators Pv and the 
of V to the %v" To this end, another operator W is defined 

/ \ 

(37) 
, /  \ y l 

where the sum is over all possible initial tape expressions for a standard 
computation. W is a unitary operator which is identical with V on the 
spaces %r and the identity elsewhere. 

The goal is to construct a Hamiltonian H so that 

W = e - i A H  (38) 

To this end, it is convenient to construct for each 2/ the eigenvalues and 
eigenvectors of Vr. (The method given is general for finite-dimensional 
spaces and applies to any Vj in the decomposition of V.) 

Fix -~ and consider the configuration states ~I'~, g,y . . . .  ~I'~v~-1 in %~ 
defined by qtv n = Vnff'ly0ob for n = 0, 1 . . . .  , Nr - 1. For n < J ~It n is the 
state representing the Turing machine after n steps of the computation. The 
above gives 

(39) = ' t ' . +  l 

with the understanding that if n = N~ - 1, n + 1 = O. 
The above shows that V v is the bilateral shift operator on %~. Since 

%7 is finite dimensional V~ is pure discrete. The eigenvalues and eigenvec- 
tors of such operators are known. The eigenvalues of V~ are the Nvth roots 
of unity ~0, a l . . . . .  ~U~-1 given by 

[ 2 t r i l l  (40) a t = exp -- 
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The eigenvectors q5~ . . . . .  q)) , - t  are given by 
Nv-1 

1 E (at) -j+'tt'] (41) 
~ '  - ~ -  j=0 

One clearly has Vr~ ~ = aft)}'. From the above it is seen that the 
Hamiltonian H must satisfy Eqs. (37) and (38). To this end one requires 
that H satisfy 

H = Z H,  (42) 

where for each standard tape expression ,{, Hv operates only in %v and is 
zero elsewhere, and Vv = e x p ( - i l i A ) .  Then for all times t, W(t)= exp 
[-  iHt] satisfies 

W(t)=~]e-iH, t P ~ + ,  1(1 - ~ P T )  (43) 

since H~H~, = 0 for all y v ~ y'. 
There are many choices of the Hamiltonian Hr which satisfy exp 

[-  iAH~,] = Vr. Here Hv will be taken to be given by (h = 1) 
Nv--I 

H,= E 2.__g_~ l_J_ 
1=0 A N v Q~ (44) 

where Q/v is the projection operator for the eigenvector qs~. Note that the 
choice H v = ~ Z o  1 (2~r/A)(l/N r + n~')QJ where n l  is an arbitrary 1- 
dependent integer also satisfies Eqs. (37) and (38). Equation (44) is the 
simplest of these possibilities in that n Z = 0 for all I and y. 

Let Vr(t ) = e x p ( -  iHyt) be the time shift operator for the Hamiltonian 
H v as defined by Eq. (44). Then one has 

Vr(t ) ~] - 27tilt = e x p -  Q/  (45) 
t=0 NrA 

The time shift operator Vr(t ) and the Hamiltonian H r are given in 
Eqs. (44) and (45) in terms of their eigenprojectors Q~. Since these are 
difficult to directly visualize it is worthwhile to express Vv(t) and H v 
directly in terms of spin configuration exchange operators and projection 
operators on spin configuration states. This can be done by use of Eqs. (40) 
and (41) to express Q]  as 

Nr-1 
1 ~-~ exp[ 2~ril ] 

Q? - Nv j=0 - ~ ( j  - k) ~ ) ( ' t ' ~  (46) 

k=0 
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Now one has 

~])(,~,~ = ojkP Z (47) 

where ojk, which is the operator which exchanges configurations j and k, is 
given by Eq. (14). Note that configurationsj and k which correspond to the 
overall system state at the respective j th  and kth step, are defined over the 
whole lattice region in Fig. 1. PZ is the projection operator on the configu- 
ration state ~'~. 

Use of Eqs. (46) and (47) in Eqs. (44) gives an alternate expression for 
the Hamiltonian 

N~--I 

Hv= ~,, ~.koj~P] (48) 
j,k=O 

where the coefficient dig is given by 
Nv-1 2~rl 2~ril(j- k) 

4k ,__z0= (49) 

The time shift operator, Eq. (45) becomes 
N~-I 

Vv(t ) = ~, bjk(t)o~P ~ (50) 
j,k=O 

where the coefficient bjk(t ) is given by 
Nv-1 

1 27ril[ t + k - j )  (51) b j k ( t ) = ~  t=0E exp-- Nv ~ S  

It is clear that the system Hamiltonian given by Eq. (42) and Eqs. (44) or 
(48) has the desired properties. It is time independent. Also the evolution of 
~I'(t) = e x p ( -  iHt)'~lvoOb is such that at time t = nA xI,(nA) = ,ITS, which is 
the configuration state corresponding to the nth step of the process. (Recall 
that ~lr0@ = ~ . )  This follows from the fact that, by Eq. (51) bje(nA ) = 0 
unless n mod N v + k - j  = 0 or Nv. For both of these cases bjk(nA ) = 1. 
For t = NvA, the recurrence cycle time for the lattice system in any state in 
%v one has W(NvA)~t,~ = 't,] for each n < N v. Thus if one starts at t = 0 
with the initial state "I'lv0ob - one arrives at time NrA back at the initial state. 

The effect of W(t) on configuration states at times which are not 
integral multiples of A can be easily obtained from Eq. (50). In particular, 
let t = nA + 8 where 0 < 8 < 1. Then W(t) [or equivalently Vr(t)] acting on 
"I%00_b gives 

Nv--1 

ff,(nA + 8 )=  ~ bm_n(8)qVm (52) 
m=0 
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Here use was made of the fact that from Eq. (51) one sees that bmo(n~ + 8) 
= bin,(8 ) = bm_, (6  ). 

6. CHARACTERISTICS OF THE MODELS 

6.1. Representation of Computations 

It is of value to discuss some aspects of the operation of the time- 
independent and time-dependent models in more detail. The two models 
are constructed so that three steps of the time-dependent model correspond 
to one step of the time-independent model. In particular, the state ,I~] 
which is arrived at in a time interval of nA in the time-independent model 
starting from ff'~ at time 0, is arrived at in the time-dependent model after 
an interval of 3n/L Furthermore this holds for all n. 

Both models describe the first J steps of any Turing machine computa- 
tion. If a computation halts in m steps where m is less than J, both models 
repeatedly record in cells m + 1, m + 2 . . . . .  J of the record, the same final 
triple of the state of s the contents of the cell of ~" scanned by h, and the 
position of h as is recorded in cell m. The state of ~, ~, and h is stationary 
at all times nA where m < n < J (time independent) or 3m < n < 3J  (time 
dependent) as it must be for a completed computation. 

For times nA with J < n < Nv for the time-independent model the 
representation is destroyed as the model configuration states do not corre- 
spond in general to any stages in the computation. However, it is clear that 
the record is erased and the computation is undone since one arrives at 
time NyA at the initial state. This phase will be referred to in this work as 
the reversal phase. If desired, this reversal phase can be made to occur as 
the exact inverse of the forward compute phase as is done in the models 
constructed by Bennett. (2) The corresponding quantum mechanical models, 
which are more complex than the ones discussed here, are described 
elsewhere. (15) This discussion also applies to the time-dependent model 
except that one has 3J  < n < 3N v. 

6.2. Time Locality 

The behavior of the models at times which are not integral multiples of 
A is also of some interest. To put this in perspective consider any system 
which evolves from state n at time nA to state n + 1 at time (n + 1)A. In 
general, at times t = nA + 6 with 0 < 8 < A, one would expect to find the 
system in the state n with a finite time-dependent p r o b a b i l i t y / . ( 8 )  and in 
the state n + 1 with a probability Pn+ 1(8) �9 Furthermore one would expect 
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that as 8 increased from 0 to A pn(A) decreased from 1 to 0 and Pn+l(8) 
increased from 0 to 1 with Pn(8) + Pn+l(8) = 1 for all t where nA < t 
< (n + 1)A. As a result one would not expect to find the system in a state 
which it had  passed through several steps in the past or which it would 
arrive at several steps in the future. 

This can be taken over directly in quantum mechanics. In particular a 
system will be called time local if for each n and for all times t = nA + 8 
with 0 < 8 < 1, the overall system state q'(t) is a linear combination of the 
states q'n and xI,,+ 1 only, that is 

q,(nA + 8)  = + (53) 

Here XI/n and "I" n + 1 are or thonormal  states which the system is in at time nA 
and (n + 1)A. an(~ ) and fin(S) are complex-valued coefficients such that 
J~o(8)l 2 + I fln(8)l = = 1 and an(0 ) =/3n(A ) = 1 and an(A) = fin(0) = 0. In 
particular, ~I,(t) contains no components xIt m for m < n (which correspond 
to stages already reached in the past) or for m > n + 1 (which correspond 
to stages to be reached in the future). 

It  is also possible that the system evolution is such that for one or more 
values of n the system is not time local. That  is, besides xI, n and "I',+ 1 
appearing in the linear superposition, states XII m may appear  with m ~ n, 
n + 1 with coefficients Vm(8) 4 = O. How much of each component  is present 
depends on the magnitude J'~m(8)[. 

If a system and its associated Hamil tonian are such that for each n 
and for at least some times t = nA + 8 with 0 < 3 < A the state "I'(t) is a 
linear superposition over all possible states ,I, m with nonzero coefficients 
"/nm(8) then the system shall be said to be time global. The reason for the 
nomenclature is that as the system evolves f rom state "I" n at time t n to state 
if',+1 the overall system state 'I '( t)  contains components  which correspond 
to states reached at all stages in the past as well as those to be reached at all 
stages in the future. 

These ideas can be applied to the models constructed here. One sees 
from Eq. (53) that the t ime-independent Hamil tonian models constructed 
here are all time global. In particular, the coefficients bin_ n (6) can all be 
shown by continuity and differentiability arguments to be nonzero for most 
8 between 0 and A (by most  3 is meant  all 8 except possibly for isolated 
points). This means that as the Turing machine model evolves from state 
,t'~ at time nA to state ~ + 1  at time (n + 1)h the overall system is a linear 
superposition over states representing all stages in the first J steps of the 
computat ion as well as all states occurring in the remaining Nv - J stages. 
Speaking somewhat loosely one may  say that the system state xI'(t) starts at 
time nA in a single configuration state ,t'~, then expands as t increases into 
a linear superposition over all past and future configurations states in the 
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orbit and then collapses at t = (n + 1)A back to a single configuration state 
9~+1. (The meaning of collapse here is quite different from the concept of 
wave function collapse which appears in measurement theory.) 

The time-dependent Hamiltonian models constructed here differ from 
the time-independent models in that they are time local. One sees from 
Section 4.2 that for each n and for all times nA + 6 with 0 < 8 < A, Eq. (53) 
is satisfied with %(8) = cos0rS/2A) and fin(6) = -isin0rS/2A). Note that 
%(8) and fin(8)are independent of n. 9 ,  = q,(nA)and 'I'n+ 1 = q~((n + 1)z~) 
are given by Eq. (29) where m and h satisfy n = 3m + h with h = 0, 1, or 2. 
Thus for all time nh + 6 with 0 < 8 < A, the only states contributing to the 
overall system state q'V(nA + 6) are the configuration states xI'~V and 't "v n + l  

which correspond to the just completed stage and the next stage of the 
model computation process. 

The time locality of the time-dependent models considered here has 
another important consequence. Consider the evolution of a complex 
system spread out over a region of space. One intuitively expects that as the 
evolution proceeds, changes will occur in the states of the subsystems in 
one region with the states of systems in other regions remaining stationary. 
Then the changes will transfer to some other subsystems in another region 
and occur in the new region for some time with the states of the subsystems 
in the first region remaining stationary. When the transferrals occur and to 
which subsystems in which regions they occur, or whether or not the whole 
system changes at some point, depends on the details of the process. 

The Turing machine computation process fits this description very 
well. For example, initially the kth record cell is blank and it remains blank 
while changes are occurring in other parts of the system. The state of the 
kth record cell as a subsystem changes only when a triple is recorded in it. 
Thereafter it remains stationary until it is erased many steps later on. 
Similar periods of change interspersed with periods of stationarity also exist 
for other parts of the system. 

The point to note here is that because of the property of time locality 
possessed by the time-dependent Hamiltonian models constructed here, 
states of the various model subsystems have the above property. For 
example, the state of the model subsystem corresponding to the kth record 
cell being blank remains stationary for all times t from 0 to 3kA. For times 
between 3kA and (3k + 1)A the state of the record cell changes from 'Ir~ k to 
tI'l)~ for some appropriate lsj. The state remains stationary until t---3J& 
For t > 3JA but < 3NvA the stationarity of the state depends on the details 
of the reversal phase. There is some time qA at which the kth record cell 
state returns to q'b % and remains there. 

The situation is quite different for the time-independent Hamiltonian 
models constructed here because they are time global. In particular one 
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sees from Eq. (52) that for each n as the time increases from nA to (n + 1)A 
the state of every model subsystem changes. If the configuration of the 
subsystem at step n is the same as at step n + 1 then the model subsystem 
state is the same at times nA and (n + 1)A. However, the model subsystem 
state is different at intermediate times. 2 

The magnitude of the changes in the state of any subsystem as t 
increases from nA to (n + 1)A depends mainly on the values of the 
coefficients bm_n(t~) for all values of m for which the configuration of the 
subsystem in ff'~m is different from that in ff%r. An important parameter is 
the time distance or number of steps from n to the step at which the 
subsystem configuration is changed. For example, the configuration of the 
kth record cell is changed during step number k + 1 from b to an appropri- 
ate lsj. The next changes occur in the steps occurring after the Jth when the 
complex reversal is occurring. At some step number q the kth record cell is 
converted back to b and remains there at the conclusion of each of the 
remaining Nr - q steps. 

The state of the kth record cell system at time nA + 8, as given by the 
density operator p~k(nA + 8), fits the above description. In particular 

( k  N ~ I  / J 

P ~ ' k ( n A + 8 )  = ~ + [[bm-n(t~)]2]Pb ~k+ ~a [brn-n(8)lEPl~ k 
m=0 m=q] m = k + l  

q - 1  

+ ~] b*,_ ,(3 )bin_, (3)Tr' [ q s~) (~ ,  ] (54) 
m',m=J+ l 

Here lsj denotes the appropriate triple stored in the kth record cell and p~k 
and Pt~ k are the respective projection operators on the states q%% and q'~*. 
P~ is the projection operator on the overall system state q'v m . The prime on 
the trace means that it is taken over all spin-l/2 systems except those 
comprising the kth record cell. 

2 The state of any lattice model subsystem X at time nA + 8 is given in general by a density 
operator pX(nA + 8), where by Eq. (52) 

J 
pX(n A + ~) + x~ ~ bm-,n(8) b*'- n(~) Tr --X[~V...)('~V].,.' 

j m ,  m l 

The subscript - X  means that the trace is taken over all spin-l/2 systems not in X. T h e j  
sum is over all disjoint subsets of the N v configurations defined such that all configurations 
within each subset are identical outside of X, and any two configurations with each one from 
different subsets are different outside of X. The m, m' sum is over all pairs of configurations 
within the jth subset. If a subset j contains just one configuration h then the m, m' sum 
contribution to the density operator becomes I bh_ n(~) I 2P~r where pXlx is the projection 
operator for the configuration state JXlx on X and h I X is the restriction of h to X. 
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From the above equation and the properties of the bm_~(8 ) coeffi- 
cients one sees that if 8 = 0, O~k(nA) = P~k if 0 << n ~< k or q < n < N v and 
p~(nA)  = Pt~] ~ if k < n < J. For these times (integral multiples of A) the 
above quantum states are pure and correspond to ~t'b% and ff'~k. For times 
nA + d with 0 < 6 < A O~(nA + d) is a mixture of the states Pb % and Pt~ ~ 
as well as other states which may be contributed by the right-hand term of 
Eq. (54). If 0 < n < k or q < n < N v, the dominant component in the 
mixture is p~k. How much of the other components are present depends on 
8, and on the distance m - n for all k + l < m < q - 1, or how far away in 
steps changes in the record cell are from step n. A similar discussion holds 
a t s o i f k + l < n < J .  

6.3. Complexity of the Hamiltonians 

The two types of Hamiltonians considered here differ in complexity in 
an important way. In particular, the time-independent Hamiltonian models 
constructed here are more complex than the time-dependent Hamiltonian 
models. One reason is that because the three types of steps--record, 
compute, and shift--all occur in one step in the time-independent models, 
the lattice regions over which configuration changes must be implemented 
in each step are larger in the time-independent models than in the time- 
dependent models. 

Another reason is that the construction of the time-independent 
Hamiltonians requires that one know in advance the details of all computa- 
tions that can be done with the Turing machine in question. This can be 
seen by examination of Eqs. (39), (42), and (44) or (48). For instance, to 
construct the Hamiltonian given by Eq. (42), one must know for each 
standard initial expression 7 of length < J on the computation tape all 
instantaneous descriptions and the order in which they occur in the first J 
steps in the computation process. This is clearly necessary in order to 
construct the operators ~.~ and PZ appearing in Eq. (48). This requirement 
is also equivalent to solving the halting problem for the first J steps of any 
computation. 

This is an undesirable state of affairs because it makes any such model 
useless from a practical standpoint. Clearly one wants to use any such 
model to generate new information by carrying out calculations and not 
just to repeat old information which one has had to obtain previously in 
order to construct the model. In particular the Hamiltonian must be 
sufficiently "simple" so that its construction does not require a complete 
solution of the problems for which the model would be used. 

The time-dePendent Hamiltonian models constructed here are satisfac- 
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tory in this respect. The construction of the record and shift Hamiltonians 
H 1 and H 3, Eqs. (30) and (33) does not require any knowledge of Turing 
machine computations. The construction of the compute Hamil tonian/ /2 ,  
Eq. (31), for a given Turing machine requires that one know the function 
T 0, Eq. (1), or equivalently have available all quintuples in the set Q. 

This type of knowledge is what one needs to construct any digital 
computer and the input programs. It is thus consistent with the practical 
use of such a model to make calculations. Construction of such a Hamilto- 
nian does not require knowledge of all possible computation orbits of the 
model. 

In this work, two types of models have been constructed. In one, the 
evolution is time local and the Hamiltonians are less complex but are time 
dependent. In the other type the evolution is time global and the Hamil- 
tonians are more complex but are time independent. 

The question arises whether these results can be generalized. In partic- 
ular, must all time global Hamiltonian models of the computation process 
be sufficiently complex that the construction of the Hamiltonian requires 
prior knowledge of all computation orbits? It is speculated that the answer 
is "yes." An equally important question is "must all time-independent 
Hamiltonian models be time global?" 

To answer this one notes that a theorem can be proven which says that 
any Hamiltonian model for which V(A)= exp[-- iAH] takes states 'tt~ 
corresponding to the completed nth computation step into states 'I "v n + l  

corresponding to the completed n + 1st step in a time interval A for all 
n = 0, 1 . . .  N v - 1 and all standard initial tape expressions 3' (i.e., a bilat- 
eral shift) as in Eqs. (38)-(43), must be time global. However, it does not 
follow from this theorem that all time-independent Hamiltonian models of 
the computation process are time global. For  example, the models con- 
structed elsewhere (~3) are time independent and time local. The reason 
these models escape the restrictions of the theorem results from the fact 
that they can be regarded as appropriate limits of sequences of models 
similar to those constructed here. Although the theorem holds for each 
model in the sequences it does not hold for the limit models. It is hoped to 
give further details elsewhere. 

6.4. Energy Dissipation 

Another property of the time-independent Hamiltonian models con- 
structed here is that they dissipate no energy as they evolve. That is, not 
only is the total energy a constant of the motion as it must be for any 
Hamiltonian evolution but there is no state degradation. In particular at 
each time nA for n = 0, 1 . . . . .  Ny - t the overall system state corresponds 
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to a single spin configuration on the lattice. It is not a linear combination 
N - 1  7 ~m~=oCm(nA),t,m of lattice spin configuration states where the coefficients 

Cm(nA ) are such that Cm(nA)~a 0 for values of m v ~ n and the amplitude 
Icn(nA)[ for finding ~t'~ in ~'V(nA) decreases as n increases. This would be 
the case if the overall system state were degrading as it evolved. 

For the time-dependent models energy dissipation may well occur in 
the external agency which turns the successive step Hamiltonians on and 
off. Energy changes occur within the model only when a step in which the 
Hamiltonian, although active, makes no Changes in the model state follows 
or is followed by a step in which the active Hamiltonian changes the model 
system state. This occurs because by Eq. (18) if q'((3m + h)A) = ~((3m + 
h + 1)A) then (~t'(t),Hh+~I'(t)) = ~rh/2A for all t = (3m + h)A + 6 with 
0 < 6 < A. However, if '~((3m + h)A) v~ ~((m + h + 1)A) then ('P(t), 
Hh+l~(t)) = 0. An example of this occurs if a computation halts in L < J 
steps, then for all times t with 3LA < t < 3JA, H 1 and H 3 when active 
change the model system state but H 2, when active makes no changes. 

Another aspect of the time-independent Hamiltonian models con- 
structed here is that they operate essentially at the quantum limit. That is 
the system energy uncertainty dE divided by the computation speed 1/A is 
close to the limit given by the time energy uncertainty principle. (18~ To see 
this, one notes that the spread in energy eigenvalues, given by (2~rh/A)(1 - 
t/N~),~2~rh/A is an upper limit for BE. The uncertainty principle gives a 
lower limit as 6E ~ h/A. 

Also for the models constructed here limits on the computation speed 
which arise from the presence of energy dissipation (~ are not applicable. 
One can in principle at least increase the computation speed by increasing 
the average system energy < / / 7  > without introducing state degradation 
and energy dissipation. One sees this from Eqs. (48) and (49), which give 
for any lattice configuration f 

This shows that the energy is independent o f f  and is given by 7rh/h if N v is 
large. The result follows from the fact that A is the time it takes the model 
to carry out one computation step (and is also roughly the lifetime of 
the system in each of the states *~), so l /A,  the computation speed, 
_~ (Hv)/~h 

These results support Deutsch O) and Landauer(~9) in their criticism of 
Bekenstein (1~ in that the computation speed can be made arbitrarily high 
by a sufficient increase of the average energy of the Turing machine model 
system. For example, if the average energy is 1 eV (electron volt), then the 
computation speed is 4 • 1014 steps/sec. I f  the energy is 1 erg, then the 
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computation speed is about 3 • 1026 steps/sec, a value well above Beken- 
stein,s (1) limit of 10 ~5 steps/sec. 

7. MEASUREMENTS 

In order to use any of the models constructed here for actual calcula- 
tions, one must be able to make measurements of the parameters which are 
relevant to the Turing machine model representation. For example, one 
may want to carry out a complete measurement to determine the l, X, j ,  k, 
values. Or one may want to determine if the computation has halted, and if 
so, what the final tape expression is. Since important aspects of these 
measurements are different for the time-independent and time-dependent 
Hamiltonian models constructed here, those models will be considered 
separately. 

7.1. The Time-Independent Models 

Consider first a complete system measurement of the Turing machine 
plus record system parameters in a time-independent Hamiltonian model as 
constructed here. The possible outcomes of such a measurement include all 
values of l, X, j ,  k, q~ which describe the first J steps of the calculation as 
well as all other spin configurations reached in returning to the initial state. 

Let such a measurement take place over a time interval of width 8 
centered on nh for some n < J and let lXjneo denote the state of the Turing 

- ~V(nh). Then one machine plus record system after n steps. That  is q'lxjn~ - 
can show that if 6 << h then one obtains with high probability, 1 - c3 2/A2, 
the outcome lXjne O. (c is a constant of order unity.) The probability of 
obtaining any other outcome is c3 2/A2. 

Furthermore, any such measurement necessarily perturbs the system 
state. The reason is that the model system is in an exact eigenstate of any of 
the observables of interest here [i.e., in the form given by Eq. (9)] only at 
the instants t = hA. At other times the state qtv(t) is a linear superposition 
over all N v configuration states in the computation orbit and is not an 
eigenstate of any of the observables of interest here. 

In particular one can show 3 that at the end of the measurement 

3 Let {q~f [f = 0, 1 . . .  N v - 1 ) and q% denote orthonormal states of a measurement apparatus 
where q~b denotes the initial apparatus state. Let the measurement interaction Hamiltonian 
be given by H ' =  (rrh/28)[Ef(Pf|  of) - 1], where Pf is the projection operator for finding 

Y the model system in state ~ and of exchanges the states Sf and Ob and is the identity 
elsewhere. The measurement is described by the Hamiltonian H' ,  which is turned on at time 
nA - 8 /2  and off at nA + ~/2,  plus the Hamiltonian H v [Eq. (48)] which is active at all 
times. The model plus apparatus system state at time nA + 8/2  is given by ~,fO[ | qf + 
0b v | q%, where O 7 and ObV have the properties described in the text. 
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interaction at time nA + 8 / 2  the model system state which corresponds to 
the outcome l)tjneo is given by Olrxj,q,, where 10~'xy,,] 2 = 1 - c62/A 2 and 

is an (unnormalized) state which is orthogonal to ~r(nA + 6/2) and 
whose leading term, in powers of 8/A, is of order 82/A 2. Since "~'r(nA + 
8/2)  is the state of the model system in the absence of any measurement, 
represents the perturbation by the measurement associated with outcome 
rain+. 

The model system state 07 associated with any other outcome f is such 
that [0712 < c82/A 2, It represents a large perturbation by the measurement 
on the model system state and cannot be considered to represent any stage 
in the Turing machine computation. 

The above shows that if a complete system measurement is to yield the 
correct outcome with probability close to unity and not perturb the system 
state appreciably its duration 8 must be smaller than the time interval k 
between computation steps. This can be quite difficult especially if A is 
short. 

Another consequence of the fact that any complete measurement of 
finite duration 8 necessarily perturbs the system state is that such a 
measurement also necessarily introduces energy dissipation into the system. 
This can be seen by the fact that the state of the model system at the end of 
the measurement is no longer a pure state but is a mixed state with finite 
entropy. (The state is obtained as a trace, over the apparatus degrees of 
freedom, of the model system and apparatus state at the conclusion of the 
measurement.) 2 The energy dissipation, which can be defined as the initial 
system energy minus the energy associated with the desired final state 0h>+, 
is given by r - (0~jn+ ,//v0~j,+), which equals (Ka2/A2)(rrh/A) where K 
is a constant of order unity. 

One sees then that to avoid appreciable perturbation and energy 
dissipation by a complete measurement, the duration 8 of the measurement 
must be short with 6 <</X. However, as was seen this may be difficult to 
achieve. Clearly it would be desirable not to have to restrict measurements 
to such short durations. 

Unlike the complete system measurements one can determine whether 
or not the computation has halted by examination of a subsystem only. It is 
sufficient to examine two adjacent record cells. If the contents of the kth 
and k + Ist cell examined at any time after (k + 2)A but before JA are the 
same, the computation halted by the kth step. If the contents are different, 
the computation did not halt by the kth step. 

One can apply the analysis just discussed to such halting measure- 
ments of the kth and k + 1 st record cell subsystems. The results show that 
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such measurements also necessarily perturb the system and introduce 
energy dissipation even if they are restricted to intervals 8 < A. However, as 
a practical matter the amount  of change in the state of the kth and k + 1 st 
record cells may be sufficiently small so that the measurement can be 
extended over several A intervals without much perturbation and dissipa- 
tion. The actual amount  can be determined from an equation very similar 
to Eq. (54) for n such that J > n > k and depends on n, k, and system 
parameters. 

7.2. Time-Dependent Models 

Complete system measurements on the time-dependent Hamiltonian 
models constructed here also perturb the model state and introduce energy 
dissipation even if the duration is less than A. However, halting measure- 
ments which examine the kth and k + 1st record cells at times t where 
3(k + 1)A < t < 3JA do not perturb the system state or introduce energy 
dissipation. The reason is that because these models are time local the 
states of subsystems are strictly stationary during all times for which the 
corresponding steps are not changing the configurations of the subsystem 
in question. This can be seen from Eq. (53), which shows that the configu- 
ration state of any subsystem which is the same in ,I,~ as in 'I'~+ 1 remains 
stationary over all times between nA and (n + 1)A. This means that mea- 
surements such as the halting measurements need not be restricted to 
durations less than 21 and can extend over many intervals A. 

8. DISCUSSION 

It is good to briefly review the advantages and disadvantages of the 
models constructed here. The time-independent Hamiltonian models have 
the advantanges that they are time independent--no external agent is 
required. Also they do not dissipate energy or degrade the system state, and 
they operate at the quantum limit in that the system energy uncertainty 
divided by the computation speed < 2~zh. They have the disadvantage that 
they are very sensitive to external influences. Also the Hamiltonian is quite 
complex in that its construction requires prior knowledge of all J step 
computation orbits of the Turing machine under consideration. Finally the 
evolution is time global. This has the result that all measurements--even 
those confined to subsystems--perturb the model system state and intro- 
duce energy dissipation. This occurs even if the duration of the measure- 
ments is less than the computation step t ime--a  requirement which must be 
met for any system measurement. 
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The time-dependent models have the advantage that there is no state 
degradation. Also, the Hamiltonians are less complex. In particular for 
each Turing machine, construction of the Hamiltonian requires knowledge 
of the function ~-Q, Eq. (1). One need not know the J step computation 
orbits. Finally the evolution is time local. This has the consequence that 
measurements, restricted to appropriate subsystems, such as halting mea- 
surements, need not perturb the system or introduce energy dissipation. 
Also they can extend over several computation step intervals. The models 
have the disadvantage that they are very sensitive to external influences. 
Also an external agent is required to turn on and off the record, compute, 
and shift step Hamiltonians. 

In the models constructed elsewhere, (13-1s) the external agent which 
carried out this turning on and off is provided by successive scatterings of a 
moving system from a sequence of fixed scatters (14'15) or a sequence of 
moving systems scattering in succession off a fixed scatterer. (~3) Model 
parameters were fixed so that one system scattering from one fixed scatterer 
carried out one step in the model computation. In these models the 
Hamiltonians were time independent and, under the approximation used in 
one of the papers, (13~ were time local and did not dissipate energy or 
degrade the system state. The models discussed in other papers (t4'~5) 
showed state degradation and energy dissipation even if no measurements 
are carried out. The models are also time local to the extent that various 
approximation made can be considered to be exact. Furthermore, the 
Hamiltonians in these models can be less complex in that the Turing 
machine model Hamiltonians used are essentially those used for the time- 
dependent models constructed here. Finally one notes the successive scat- 
tering models have the advantage that the representation is not destroyed 
after J computation steps have occurred. In particular, the state of the 
Turing machine plus record system becomes permanently stationary after J 
computation steps so that measurements can take as long as is desired. 

In conclusion, one notes that the mathematical existence of nondis- 
sipative quantum mechanical Hamiltonian models of a finite number of 
steps of any Turing machine computation has been shown here. However, 
it remains an open question whether such models can actually be con- 
structed in the laboratory. For  example, if one accepts as true the statement 
that at most a countable infinity of Hamiltonian models can actually be 
constructed in the laboratory, then most Hamiltonians which exist mathe- 
matically are not physically constructible. 

On the other hand, the existence of such Hamiltonians means that one 
must be cautious about assuming that the computation process must 
dissipate energy and cannot be carried out by models operating close to the 
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quantum limit. The results of this paper show that if one wants to argue 
that such models of the computation process cannot be physically con- 
structed in principle, the argument cannot be based on the nonexistence of 
Hamiltonian models. Some other principle must be invoked. 
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